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Yuji MAEDA ∗, Naruhiko MORIWAKI †, Yoshio MIYAHARA ‡

Abstract

The purpose of this paper is to seek a model that adequately describes a company’s U.S.
product liability risk based on a company’s loss data. U.S. product liability risks are real threats
to Japanese multinational corporations which sell their products to the U.S. market since the
liability risks might cost a tremendous amount of money to them not only for the liability
claims but also for punitive damages, legal costs, reputational costs, business opportunity costs
and risk control costs. Thus, it is important for the corporations to manage the U.S. product
liability risk effectively and efficiently. The models can be used by the corporate risk managers
for the insurance cost and benefit analysis, the captive feasibility study, the risk management
efficiency analysis, among others.

Based on the actual U.S. product liability loss data of a particular manufacturer1, five
different compound Poisson process models, which are Poisson processes compounding with
a jump following Inverse Gaussian Distribution, Lognormal Distribution, Gamma Distribution,
Pareto Distribution or Weibull Distribution, are analyzed for their goodness-of-fit to the risk.
The parameters for each model are estimated by the maximum likelihood estimation method.
The best fitted model is determined based on AIC criterion.

As a result, the Lognormal type compound Poisson process is the best among the models
to describe the risk. Kolmogorov-Smirnov test confirms the result that the model is“ not
significantly”different from the actual process.
Key words: U.S. Product Liability, Risk Management, Risk Modeling, Compound Poisson
Process,

1 Introduction

Japanese multinational corporations, especially manufacturers who export their products to for-
eign markets, face various international risks. One of their serious concerns in exporting goods to
foreign countries is the exposure2 to the country’s civil liability for defects in the products, namely,
product liability risks. Especially, the product liability risk in the U.S. is considered a real threat to
the Japanese manufacturers since the liability, when it incurs, often costs the companies a tremen-
dous amount of money not only for liability claims themselves but also for additional costs such as
punitive damages, legal costs, reputational costs, business opportunity costs and risk control costs.

∗Graduate School of Economics and Management, Shiga University,E-mail: ynmaeda@hcc5.bai.ne.jp
†Graduate School of Economics, Nagoya City University, E-mail: naruhiko-moriwaki@nifty.com
‡Professor, Graduate School of Economics, Nagoya City University; Visiting Professor in 2004, Center for Risk

Research, Faculty of Economics, Shiga University; E-mail: y-miya@econ.nagoya-cu.ac.jp
1called ”Company A” in this paper.
2International Risk Management Institute [5] defines ”exposure” as the state of being subject to loss because of

hazard or contingency. Also used as a measure of the rating units or the premium based on a risk.
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This paper presents an empirical analysis to show how the companies can model the risk as-
suming that it follows the Ĺevy process on the U.S. product liability losses. The paper, therefore,
focuses on the analysis of the actual U.S. product liability loss data and then examines which
stochastic model the most appropriately describes the risk.

The structure of the subsequent sections is as follows: In the second section, product liability
in the U.S. is briefly described. The section discusses what the U.S. product liability risk is all
about and the necessity of the research. The third section demonstrates the background literature
and discusses what models can be the candidate models to the risk. The fourth section explains the
nature of the loss data used for modeling. The fifth section describes the focused models in more
details. We focused several Lévy processes for modeling. They are compound Poisson processes
with Lévy measures such as Inverse Gaussian, Lognormal, Gamma, Pareto and Weibull distribu-
tions. The sixth section presents the methodology to the parameter estimation for the models and
their comparison of their goodness-of-fit to the risk. Here, the classical method of moments is
used to provide initial input values for parameters. The maximum likelihood estimation method
is then used to estimate model parameters. The candidate models are compared based on AIC
(Akaike Information Criterion) to determine the best fitted model among them. The seventh sec-
tion discusses the results, implication and limitations of this research. The last section is left for
concluding remarks.

2 Product Liability

Metzger et al. [6] defines ”Products Liability” as the legal responsibility of the manufacturer,
distributor, or retailer to the user or consumer of a product. The liability arises out of the man-
ufacture, distribution, or sale of an unsafe, dangerous, or defective product and the failure of the
manufacturer, distributor, or retailor to meet the legal duties imposed with respect to the particular
product.

They[6] also argues that most products liability lawsuits in the U.S. are based on negligence
or strict liability in tort or both. In these days, the law is at the consumer side and is more likely
to protect consumers. Modern courts and legislatures intervene in private contracts for sale of
goods and impose liability regardless of fault. As a result, sellers and manufacturers face greater
liability and higher damage recoveries for defects in their products. Japanese manufactuers who
are unfamiliar with the U.S. legal systems face more exposure to the liability risk since they are
less likely prepared for the risk than the U.S. companies.

Japanese companies often became targets for injured people together with their attorneys seek-
ing for larger monetary recoveries and compensations because they know that Japanese companies
are vulnerable. Therefore, it is of great value if the Japanese companies could forecast future losses
based on the risk model for the risk management purposes. Cost benefit analysis for insurance pur-
chase and captive feasibility study are some examples for its usage.

In order to minimize the cost associated with the U.S. product liability risk, Company A might
want to establish a captive insurance company, its insurance subsidiary company, to obtain ad-
equate coverage for the U.S. product liability risk rather than to purchase an expensive product
liability insurance from the commercial insurance market. Skipper et al. [2] defines ”Captives” as
closely held insurance companies that primarily underwrite the risks of their owners. They argue
that captives can provide corporations various benefits such as reduced costs, access to reinsurance,
cash flow advantages, investment income and tax advantages.

Confirming the feasibility of its captive, Company A should conduct a feasibility study to
determine whether or not and to what extent the captive can maintain its solvency. Initial capital
investment and the premium are two of the most important determinants in the feasibility study.
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They can be numerically determined in the simulations of proforma financial statements which
should include forecasted losses. The future losses can be forecasted with a stochastic model that
is created based on the past loss data. This paper, therefore, attempts to determine an appropriate
model to be used for the feasibility study assuming that Company A wants to create a captive to
cover the U.S. product liability risk. The ultimate concern is to obtain the distribution of losses at
each year end over the forecasted time period so that the initial capital and premiums should be
enough to cover the loss distribution at a certain confidence level.

3 Background Literature and Candidate Models

The accumulated losses follows the aggregate claims process. Gerber [3] argues that a compound
Poisson process with stationary and independent increments can be appropriate for the aggregate
claims process. Here, the claim number process follows Poisson process. The increments are
considered to follow a certain loss distribution or mixed loss distributions.

As far as loss distributions are concerned, Hogg and Klugman [4] suggest that forSize-of-
Loss Distributions, Pareto Distribution, Gamma Distribution, Lognormal Distribution and Weibull
Distribution can be the candidate.

This paper focused on the following five distinct distributions: Inverse Gaussian Distribution,
Gamma Distribution, Lognormal Distribution, Pareto Distribution and Weibull Distribution.

4 Data and Sample Path

The data initially collected was limited to the product liability losses incurred during the year
1980-1996 to Company A, which exports products to the U.S. market.

Company A started exporting its products to the U.S. market in the late 1970s. The company
first suffered from product liability losses in 1980 and, since then, the number of losses has been
increased as its U.S. sales increased until the 1990s when the annual loss amount has been rather
stablized.

For developing risk models, the last five year loss data which are the data from 1992 to 1996 are
used as the sample data because those five years are assumed to reflect the most current business
conditions and also in these years the U.S. sales figure has become stable. Trend, loss developing
and incremental exposure are ignored for simplicity in this analysis. The sample data for this
research is illustrated in the next page.
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Fig. 1 Year 1992

Fig. 2 Year 1993 Fig. 3 Year 1994

Fig. 4 Year 1995 Fig. 5 Year 1996
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5 Model Description

Lévy Process{Zt} follows a compound Poisson process when it has generating triplets of the fol-
lowing: (0, ν(dx),b0)0, ν(dx) = cρ(dx). c is a positive number andρ(dx) is a probability measure
onR whereρ({0}) = 0. c is a parameter that indicates a frequency of Jump occurrence andρ(dx)
follows a distribution of jumps if a jump occurred.

In this case,Z1 has a characteristic function ofφ(u) :

φ(u) = exp[ψ(u)]

ψ(u) = ib0u + c(ρ̂(u) − 1)

ρ̂(u) =

∫ ∞

∞
eiuxρ(dx)

In this study, the following mathematical models are focused and analyzed for their fitness to
the product liability risk:

1. IG type compound Poisson process: the Lévy measure is the Inverse Gaussian (IG) distribu-
tion

2. Lognormal type compound Poisson process: the Lévy measure is the Lognormal distribu-
tion.

3. Gamma type compound Poisson process: the Lévy measure is the Gamma distribution.

4. Pareto type compound Poisson process: the Lévy measure is the Pareto distribution.

5. Weibull type compound Poisson process: the Lévy measure is the Weibull distribution.

Each model is briefly explained in this section. Here, unless otherwise noted, the following
equations are satisfied:

ĥ1 := m̂1

ĥ2 := m̂2 − m̂ 2
1

ĥ3 := m̂3 − 3m̂2m̂1 + 2m̂ 3
1

m̂k :=
1
n

n∑

i=1

ξ k
i , k = 1,2,3

5.1 Inverse Gaussian (IG) Type Compound Poisson Process

IG distributionρ is given by

ρ(B) =
α√
2π

exp(αβ)
∫

B
x−3/2 exp

(
−1

2

(
α2x−1 + β2x

))
1{x>0} dx

It is known that the distribution of the following stopping time,T(α,∞),

T(α,∞) = inf {t > 0 : βt + Wt > α, α > 0, β > 0}
follows the IG distribution. Here,{Wt} is a Brownian Motion.
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Fig. 6 Density Function of IG Distribution

The characteristic function, ˆρ(u), is described as :

ρ̂(u) = exp
[
−α

( √
−2iu + β2 − β

)]

Therefore, Ĺevy Process,{Zt}, that follows the IG type compound Poisson process whose Lévy
measure is :

ν(dx) = c
α√
2π

exp(αβ)x−3/2 exp

(
−1

2

(
α2x−1 + β2x

))
1{x>0} dx

In this case,

φ(u) = exp{ψ(u)} (1)

ψ(u) = c
{
exp

[
−α

( √
−2iu + β2 − β

)]
− 1

}

Figure7 shows a sample path of{Zt}.

Fig. 7 A Sample Path of IG Type Compound Poisson Process

(α = 0.3868, β = 0.18076, c = 0.2005)

If the parameters estimated by the classical method of moments are stated asα(CMM) , β(CMM) , c(CMM),
simple calculations provide the following equations:
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α(CMM) = ĥ1
β(CMM)

α(CMM)

β(CMM) =

√√√ 2

−ĥ2/ĥ1 ±
√
−3

(
ĥ2/ĥ1

)2
+ 4ĥ3/ĥ1

c(CMM) =
ĥ 2

1

ĥ2 − ĥ1/β(CMM)

Here,α(CMM) , β(CMM) , c(CMM) > 0

5.2 Γ (Gamma) Type Compound Poisson Process

ρ onR follows aΓ distribution, when

ρ(B) =
αβ

Γ(β)

∫

B
xβ−1 exp(−xα)1{x>0} dx

However,α, β > 0

Fig. 8 Density Function ofΓ Distribution

The characteristic function ofΓ Distribution,ρ̂(u), follows :

ρ̂(u) = exp
(
1− iα−1u

)−β

Therefore, Ĺevy Process,{Zt}, that follows theΓ type compound Poisson process whose Lévy
measure is:

ν(dx) =
cαβ

Γ(β)
xβ−1 exp(−xα)1{x>0} dx

Also,

ψ(u) = c

{(
1− iu

α

)−β
− 1

}

Figure 9 shows a sample path of{Zt}.
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Fig. 9 A Sample Path ofΓ Type Compound Poisson Process

(α = 0.22559, β = 0.48261, c = 0.20054)

If the parameters estimated by the classical method of moments are stated asα(CMM) , β(CMM) , c(CMM),
simple calculations provide the following equations:

α(CMM) =
−ĥ1ĥ2

ĥ 2
2 − ĥ1ĥ3

β(CMM) =
−ĥ 2

2

ĥ 2
2 − ĥ1ĥ3

− 1

c(CMM) =
ĥ 2

1 ĥ2

2ĥ 2
2 − ĥ1ĥ3

Here,α(CMM) , β(CMM) , c(CMM) > 0

5.3 Lognormal Type Compound Poisson Process

ρ onR follows a lognormal distribution when

ρ(B) =
1√
2πv

∫

B

exp
[
− (

log x−m
)2 /2v

]

x
1{x>0} dx

However,v > 0. In this, log(X) ∼ N(m, v).
Therefore, Ĺevy process,{Zt} , follows the Lognormal type compound Poisson process whose

Lévy measure is:

ν(dx) =
c√

2πvx
exp

−
(
log x−m

)2

2v

 1{x>0} dx

Also, kth moment of the lognormal distribution,mk

(
:= E[Xk]

)
follows the equation of

mk = exp

(
km+

1
2

k2v

)

On the other hand, it is easy to see that

ψ(1)(0) = cρ̂(1)(0) = icm1

ψ(2)(0) = cρ̂(2)(0) = −cm2

ψ(3)(0) = cρ̂(3)(0) = −icm3
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Fig. 10 Density Function of Lognormal Distribution

Simple calculations provide the following estimators by the classical method of moments:

m(CMM) = log
(
ĥ2/ĥ1

)
− 3

2
v̂

v(CMM) = log
ĥ1ĥ3

ĥ 2
2

c(CMM) = exp

[
log(ĥ1)

(
m̂+

1
2

v̂

)]

Here,v̂ > 0
Figure 11 shows a sample path of{Zt}.

Fig. 11 A Sample Path of Lognormal Type Compound Poisson Process

(m = −0.56274, v = 2.9082, c = 0.20057)

5.4 Pareto Type Compound Poisson Process

ρ onR follows a Pareto distribution when

ρ(B) =

∫

B

αβα

xα+1
1{x>β} dx, α, β > 0

Therefore, Ĺevy process,{Zt}, follows the Pareto type compound Poisson process whose Lévy
measure is:
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Fig. 12 Density Function of Pareto Distribution

ν(dx) = c
αβα

xα+1
1{x>β} dx

In order to generate a sample path following the Pareto type compound Poisson process, ran-
dom numbers following a pareto distribution are generated by a method of reverse function:

Pareto(α, β) ∼ β
(

1
1− Uniform(0,1)

)1/α

.

Figure 13 shows a sample path ofZt.

Fig. 13 A Sample Path of Pareto Type Compound Poisson Process

(α = 0.25019, β = 0.01039, c = 0.20053)

Also,kth moment of Pareto distribution follows an equation of

mk =
αβk

α − k
, k < α

Therefore, simple calculations provide the following estimated parameters of,{Z1}, by the clas-
sical method of moments:
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α(CMM) = 2±
√

A2 − A
A− 1

, A :=
ĥ1ĥ3

ĥ 2
2

β(CMM) =
ĥ2

ĥ1

α(CMM) − 2
α(CMM) − 1

c(CMM) = ĥ1
α(CMM) − 1
α(CMM)β(CMM)

5.5 Weibull Type Compound Poisson Process

ρ onR follows a Weibull distribution when

ρ(B) =

∫

B

αxα−1

βα
exp(−(x/β)α) 1{x>0} dx, α, β > 0

Fig. 14 Density Function of Weibull Distribution

Therefore, Ĺevy process,{Zt}, follows the Weibull type compound Poisson process whose Lévy
measure is:

ν(dx) = c
αxα−1

βα
exp

(
−

(
x
β

)α)
1{x>0} dx

Figure 15 shows a sample path of Weibull type compound Poisson process. Random numbers
following a Weinbull distribution are generated by a method of reverse function:

Weibull(α, β) ∼ β {− log [Uniform(0,1)]
}1/α

Also, kth moment of the Weibull follows:

mk = βkΓ

(
1 +

k
α

)

If the parameters estimated by the classical method of moments are stated asα(CMM) , β(CMM) , c(CMM),
simple calculations provide the following results:
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Fig. 15 A Sample Path of Weibull Type Compound Poisson Process

(α = 0.60858, β = 1.3321, c = 0.20055)

α(CMM) ∈
α ∈ <

+

∣∣∣∣∣∣∣
ĥ3

ĥ1

Γ(1 + 1/α)
Γ(1 + 3/α)

−
(
ĥ2

ĥ1

)2 (
Γ(1 + 1/α)
Γ(1 + 2/α)

)2

= 0



β(CMM) = ±
√

ĥ3

ĥ1

Γ(1 + 1/α(CMM))
Γ(1 + 3/α(CMM))

c(CMM) =
ĥ1

β(CMM)Γ(1 + 1/α(CMM))

6 Methodology

6.1 Parameter Estimation

Since the focused models have characteristics of timely homogeneous, the time series{Zi−Zi−1, i =

1, · · · ,n} has actual values ofξ = {ξi , i = 1, · · · ,n} and they are samples ofZ1. Therefore, the
parameters ofZ1 are estimated using these samples ofξ.

The frequency of loss occurrence is more or less once a day. This means that the compound
Poisson process has a intensity parameter of less than one. Thus, as far as the daily data is con-
cerned, the distribution of jump width can be separately estimated from the distribution of time for
jump occurrence in the model estimation（See Appendix A).

The paper attempts to take the parameter estimation procedure as follows:

1. Parameters ofZ1 are estimated by the classical method of moments.

2. If the estimated intensity is much less than one, the distribution of jump width is estimated
separately from the distribution of time for jump occurrence.

3. If the estimated intensity is larger than one, the estimated parameters by the classical method
of moments are used for the model.

6.2 Model Selection Based on AIC

As previously stated, the model process is considered a combination of two separate models: a
distribution of jump width and a distribution of time for jump occurrence. Accordingly, the distri-
bution of time for jumping is the same factor among these focused models. The goodness-of-fit of
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those models is, in turn, the goodness-of-fit of the model distribution of jump width to the actual
distribution of loss amounts.

With the daily data from 1992 to 1996, the parameters of the focuse five distinct models are
estimated. Then, the best fitted model to the data is chosen based on the AIC criterion of a distri-
bution of jump width.

7 Result, Implications and Limitations

The result is summarized in Table 1. The table shows that the Lognormal type compound Poisson
process is considered the best fit to the risk among those focused models. The same result is
visually estimated from Figure16-20.

Unfortunately, appropriate parameters of the Weibull type compound Poisson process cannot
be obtained by the classical method of moments.

Conversely, the Pareto type compound Poisson process is considered the worst fit to the risk.
The reason can be explained by the fact that a parameter of Pareto distribution,β, is greatly influ-
enced by the minimum values of the sample data and another parameter,α, is the only parameter
that is rather free from those minimum values.

7.1 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test is conducted to examine the goodness-of-fit of the model to the data.
However, since it is hard to calculate the expected frequency from the distribution function,Z1, the
expected frequency is estimated in the iterative procedure with 100,000 iterations.

As a result of the test, theP-Value of the Lognormal type compound Poisson process is 0.5588.
It is implied that the model and the actual data are ”not significantly different”. Also, it is visually
considered that Figure21 is very similar to the actual data.

The P-Value of each model is summarized in Table1. It is interesting to note that theΓ type
compound Poisson process can be concluded ”not appropriate” to the model based on itsP-Value,
even though it is determined as the second best to the Lognormal type and is better than IG type
compound Poisson process based on AIC.

The Weibull type compound Poisson process is considered comparatively good to the model
based on its AIC of jump width distribution while it is rather worse than IG type compound Poisson
according to Figure 22.

These results illustrate that theΓ distribution, the Pareto distribution and the Weibull distri-
bution with the obtained parameters, whose density functions provide larger values asx closes to
0, are possibly ”inappropriate” to the model even though they are considered comparatively good
based on their AIC of jump width.

On the other hand, IG distribution and Lognormal distribution, which density functions provide
smaller values asx closes to 0, can be candidate to the model.

If one is considered approporiate to the model, it is then examined whether or not its jump width
distribution model appropriately fit the actual jump width distribution. Among these candidate
models as the loss models, Lognormal type compound Poisson process is considered better than IG
type since Lognormal type is better fit the jump width distribution. In conclusion, the Lognormal
type compound Poisson process is accepted as the model describing the U.S. product liability risk.
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7.2 Limitations

Since the model is selected based on the goodness-of-fit partially, namely on comparison of distri-
butions of jump width, the selected model is not necessarily at most the best for the risk. Also, the
model is based on the loss data of a particular company. It is not necessarily concluded that the
model is applicable to other corporations or the industry in general.

Further, the model is built based on the assumption that the U.S. product liability exposure is
constant during those five year period. However, in reality, the exposure changes as time passes.
For example, changes in the units of sales, the technology, the safety features, the legal environ-
ment, the medical costs and monetary values might affect the exposure.

Fig. 16 Density Function of Jump Width

Raw Data and IG Distribution (with Maximum Like-
lihood Estimators)

Fig. 17 Density Function of Jump Width

Raw Data andΓ Distribution (with Maximum Like-
lihood Estimators)

Fig. 18 Density Function of Jump Width

Raw Data and Lognormal Distribution (with Maxi-
mum Likelihood Estimators)

Fig. 19 Density Function of Jump Width

Raw Data and Pareto Distribution (with Maximum
Likelihood Estimators)
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Fig. 20 Density Function of Jump Width

Raw Data and Weibull Distribution (with Maximum Likelihood Estimators)

Fig. 21 Empirical Distribution Function and Cumulative Distribution Function ofZ1 following Lognormal
type compound Poisson process
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(a) IG Distribution (b) Weibull Distribution

Fig. 22 Empirical Distribution Function and Cumulative Distribution Function ofZ1
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8 Concluding Remarks

This paper determined the Lognormal type compound Poisson process as the good model to de-
scribe the risk.

Now being back to the original purpose of the study, the model is built for purpose of a feasi-
bility study in establishing a captive. With the model, it is now possible to examine the cumulative
distribution at a year end which is then used for the proforma statements in the feasibility study.
Figure 23 illustrates the cumulative distribution of losses at the year end as a result of 10,000 it-
erations in Monte Carlo simulations. If the risk manager of Company A tends to view risks at the
90% confidence level, the blue portion of the figure illustrates that confidence level. On the other
hand, the red portion shows 10% as the threshold exceedence. From the accumulated losses at the
90% confidence level, the initial capital and premium of the captive can be numerically obtained
from simulations of proforma financial statements, which invites further research following this
study.

Fig. 23 Cumulative Loss Distributions at A Year End of Lognromal Type Compound Poisson Process
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Appendix A

As Table 1 illustrates, the simulation results are analyzed when the intensity is estimated much
smaller than one from the sample data. In such a case, one might wonder whether or not separate
estimation of distributions for time for jumping and for jump width is appropriate. If yes, one
might conclude that the estimated parameters in this method are appropriate to describe the actual
model.

To examine the adequacy of this separating estimation method, parameters are reversely esti-
mated from samples generated from the model with initial parameters. With 1,800 random samples
generated in the method, the maximum likelihood estimation method provides numerical estima-
tion of parameters when initial values are set at three times as much as the previously estimated
parameters obtained by the classical method of moments.

The result of the estimated parameters are summarized in Table2. Since the estiamted parame-
ters in this method provide more or less the same values among three sample data, it is concluded
that the method is adequate when the model intensity is much less than one.

Table 2 Simulation Result

IG type compound Poisson process α = 0.3868 β = 0.1808 c = 0.2005
Sample Data 1 0.39079 0.18756 0.2240
Sample Data 2 0.40336 0.19303 0.2054
Sample Data 3 0.42627 0.18926 0.2065
Γ type compound Poisson process α = 0.2256 β = 0.4826 c = 0.2005
Sample Data 1 0.17746 0.48826 0.22749
Sample Data 2 0.22084 0.52728 0.23560
Sample Data 3 0.24000 0.47249 0.22843
Lognormal type compound Poisson processm = −0.5627 v = 2.9082 c = 0.2006
Sample Data 1 -0.35129 2.9093 0.21733
Sample Data 2 -0.52186 2.8961 0.22197
Sample Data 3 -0.48414 2.8346 0.2255
Pareto type compound Poisson process α = 0.2502 β = 0.0104 c = 0.2005
Sample Data 1 0.23784 0.010675 0.22383
Sample Data 2 0.26650 0.010431 0.24087
Sample Data 3 0.24130 0.010484 0.20028
Weibull type compound Poisson process α = 0.6086 β = 1.3321 c = 0.2006
Sample Data 1 0.60363 1.5058 0.24789
Sample Data 2 0.59288 1.4532 0.22797
Sample Data 3 0.61494 1.3893 0.20998
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